Waltay Electronic Hardware & Plastic Co., Ltd info@waltay.com 86-755-88879776
You use 5 axis CNC machining parts when you need high precision and complex shapes. These parts move in five directions, so you achieve tighter tolerances and superior surface finishes. You control tool orientation and workpiece rotation, which lets you create intricate geometries in one setup. The table below shows how these parts help you improve manufacturing accuracy and efficiency.
![]()
You use 5 axis CNC machining parts when you need to create shapes that other machines cannot handle. These parts move along three straight lines—left to right (X), front to back (Y), and up and down (Z). You also get two extra movements that rotate the part or the tool. These rotations happen around the X-axis (A) and the Y-axis (B). This setup lets you reach almost any angle on a part.
Tip: You can machine complex surfaces, undercuts, and curved features in one setup. This means you do not need to move the part between different machines.
Here is a quick look at the five axes and what they do:
You can achieve very tight tolerances with 5 axis CNC machining parts. Many industries require tolerances as close as ±0.0002 inches for final products. You also get better surface finishes because the tool can always cut at the best angle.
You can choose from many materials for these parts. The table below shows some common options and why you might pick them:
You get more flexibility with 5 axis CNC machining parts than with 3 axis or 4 axis machines. With 3 axis machines, you can only cut from three directions. You need to stop and move the part to reach other sides. This takes more time and can cause mistakes. With 5 axis machines, you cut all sides in one setup.
Here is a table that shows the main differences:
You also save money and time. You need fewer setups, which lowers labor costs and reduces the chance of errors. You can machine several faces at once, so you do not need as many fixtures. This makes inspection easier and improves repeatability.
When you need complex shapes, tight tolerances, and high efficiency, you should choose 5 axis CNC machining parts.
You control three main directions when you use a 5 axis CNC machine. These are called the linear axes. Each axis moves in a straight line. The X-axis moves left and right. The Y-axis moves front to back. The Z-axis moves up and down. You can see how each axis works in the table below:
5-Axis CNC Machining transforms manufacturing by enabling multi-axis movement in a single setup. This produces complex parts with unmatched accuracy and finish, empowering engineers in advanced industries and streamlining the entire journey from innovative design to market-ready product.
You get more than just simple cuts with these axes. You can create deep holes, slots, and pockets. You do not need to move the part many times. This keeps your work accurate and saves time. Traditional machines need several setups for parts with features on different sides. You avoid mistakes and keep every part the same when you use 5 axis CNC machining parts.
You also use two rotational axes to tilt and turn the part or the tool. The A-axis rotates around the X-axis. The B-axis rotates around the Y-axis. These axes let you reach hard-to-cut angles and surfaces. The table below explains their roles:
You can cut curves, undercuts, and complex shapes in one setup. You do not need to stop and reposition the part. This means you finish jobs faster and with better quality. You keep your reference point the same, so every part matches your design.
You need a strong and stable machine structure to make precise parts. The main frame holds all the moving parts together. Each axis moves in a special way to help you cut shapes with high accuracy. The table below shows how each axis works and why it matters for your results:
You get better results when your machine has a rigid base and smooth guides. The motors and controllers move each axis with great care. This setup lets you make 5 axis CNC machining parts with tight tolerances and smooth surfaces.
Tip: Always check that your machine is level and clean. This helps you keep your cuts accurate and your parts consistent.
You need the right tools and workholding systems to keep your part steady during cutting. Good workholding stops the part from moving or vibrating. This keeps your cuts sharp and your measurements correct.
Here are some common workholding systems you might use:
You can also use these helpful tools:
To boost your results, try these steps:
When you pick the right structure and workholding, you make sure your parts come out perfect every time.
![]()
You start by designing your part using CAD software. This digital blueprint shows every detail and measurement. After you finish the design, you move to programming. You use CAM software to create toolpaths. These toolpaths guide the machine on how to cut the material.
Here are the key steps you follow when designing and programming:
You can choose from several software solutions for programming. Many shops use BobCAD-CAM V31 because it helps set up and program 5 axis machining. Fusion 360 with the RoboDK Plugin also makes it easy to load NC programs and create robot machining paths. BobCAD-CAM with RoboDK lets you export toolpaths directly for robotic machining.
Tip: Always check your toolpaths in simulation before you start cutting. This helps you catch mistakes early and avoid wasting material.
Once you finish programming, you move to the machining process. You use subtractive manufacturing, which means you start with a solid block of material and remove what you do not need. High-speed cutting tools shape the part by carving away layers.
Follow these steps to make your part:
Subtractive manufacturing gives you high precision and tight tolerances. You can achieve tolerances as fine as 0.025 mm. This method does create some material waste, but it works well for high-volume production and critical parts.